Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening.

نویسندگان

  • Richard V Farias
  • Deborah A Vargas
  • Andres E Castillo
  • Beatriz Valenzuela
  • Marie L Coté
  • Monica J Roth
  • Oscar Leon
چکیده

A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg(2+)-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), lacking endogenous RNase HI and HII. The p51-G-TCR RNase H construct displayed Mg(2+)-dependent activity using a fluorescent nonspecific assay and showed the same cleavage pattern as HIV-1 reverse transcriptase (RT) on substrates that mimic the tRNA removal required for second-strand transfer reactions. The mutant E706Q (E478Q in RT) was purified under similar conditions and was not active. The RNase H of the p51-G-TCR RNase H construct and wild type HIV-1 RT had similar K(m)s for an RNA-DNA hybrid substrate and showed similar inhibition kinetics to two known inhibitors of the HIV-1 RT RNase H.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Effect of 2,3,5,6-Tetrafluoro-4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamide Derivatives on HIV Reverse Transcriptase Associated RNase H Activities

The HIV-1 ribonuclease H (RNase H) function of the reverse transcriptase (RT) enzyme catalyzes the selective hydrolysis of the RNA strand of the RNA:DNA heteroduplex replication intermediate, and represents a suitable target for drug development. A particularly attractive approach is constituted by the interference with the RNase H metal-dependent catalytic activity, which resides in the active...

متن کامل

Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.

Human immunodeficiency virus (HIV) RNase H activity is essential for the synthesis of viral DNA by HIV reverse transcriptase (HIV-RT). RNA cleavage by RNase H requires the presence of divalent metal ions, but the role of metal ions in the mechanism of RNA cleavage has not been resolved. We measured HIV RNase H activity associated with HIV-RT protein in the presence of different concentrations o...

متن کامل

Human immunodeficiency virus reverse transcriptase-associated RNase H activity.

Biochemical characteristics of the RNase H activity associated with immunoaffinity purified human immunodeficiency virus (HIV) reverse transcriptase (RT) were examined. Glycerol gradient centrifugation of HIV RT resulted in a single peak of RNase H, associated with RT activity, with an apparent molecular weight of 110,000. HIV RNase H exhibited a marked substrate preference for poly(dC).[3H]pol...

متن کامل

Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance

Metal ions are essential for DNA polymerase and RNase H activities of HIV-1 reverse transcriptase (RT). RT studies are routinely performed at 6-8 mM Mg2+, despite the fact that the in vivo concentration might be as low as 0.2 mM. We studied the influence of MgCl2 and ATP, which likely binds a significant fraction of the magnesium pool in vivo, on the DNA polymerase and RNase H activities of HIV...

متن کامل

Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones.

Human immunodeficiency virus type I reverse transcriptase (RT) possesses distinct DNA polymerase and RNase H sites, whereas integrase (IN) uses the same active site to perform 3'-end processing and strand transfer of the proviral DNA. These four enzymatic activities are essential for viral replication and require metal ions. Two Mg2+ ions are present in the RT polymerase site, and one or two Mg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 55 10  شماره 

صفحات  -

تاریخ انتشار 2011